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FLUID MECHANICS AND THE TRANSPORT PHENOMENA, '

Many of the current research problems in chemical engineoring concern
the a‘multaneous transfer of heat and mase in flow systems, somatixaes
further cowmplicated by choinical reactions. Such {iow prablems are deacribed
by the equrilons of change" of fluid mechanics. These basic differsntial
equitiona form the ntarting point for the development of & number of topics
of direct interest to chemical engineering science, such as: (i) the sclution
of lurninar problema in fluid flow, diffusion, and henat flow; (ii) the aiudy of
turbulent flow and the eddy transport processes; (iii) the theory of boundary
layers and fiims; (iv) the study of flow in particulate systems; (v) the applica-
tions and :imitations of analogies between muss, momentum, and enzigy
transport; and {vi) the dirnwensional analysis of complex flow probiems wiin
teat and mass transfer, which canaot be solved analytically., Becauase of the
paramount importance of the equations of change in basic chexsical engingering
studies, we summarize these equitiona here in their most complete form. We
further point out the major relationchips between the equatione of change, the
fiux vectors, the transpoit coefficiente, and the focrces between molecules,

Ths eguations of change of fluid mechanics comprise the equations of
continuity for each of the chemical species, the equation of maotion, and the

TPart of the material for this article ias taken from “Molecular Theory of
Gaves and lLiquids, " by dirschfelder, Curtiss, and Bird (18). In this recent
book (hereinafter referred to as MTGL) the equations of change are dizcussed
in detail, and their applications to the mathematical theory of flames, shock
waves, sound propagation, and deicnations ars presenied.
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equation of energy balance. From the first of these equationz come the basic
equations for diffusion: from the second comes th- baa;is ’Z;x t;a lt{h’iy‘of
fluid (low; and {rom ths last equation comes the starting pasiat foz the sgudy
of heat flaw., Most of the chemical engineering unit operatiens invelve ens or
more of theas proeesses. Hence advances in the fundamentsl upderssanding
of the' various irreve:zzible processes occurriag in the chemicnl-enginearing
opnrations depend on the correct interpretation and use .of the eguations of
changa. g
These equations of change are coupled; nonlinear diffsxentisl aguations,
and sas might well doubt the usefulness of such a complex set of equations
beyund the pedagegical value of providing a cor  act formal repzeseniaiion
of a number of related fields. Of principal interest to the chemical engineer

are the szoluiinns {2 thens squations. Thesve soluiions can be dividad into

three categorjes; analytical, numerical, and experimentai. Analytical solu-

t_i:g can be gbtaired for very simple problems only. It i nevextheless just
t’hﬁec sipaple srlutiens which are the handy formulse {or evexy-day calculations. --
Poisosuille's law, Stokes' law, Bernoulli's equatior, aud the formulnse for mass
trausfer coefficients ave a few examples. Qther simple noletions, which are
somavial leas {amiliar, describe fiow nez: rotating. or al_a,tll&ttpg, discs, {low

¢{ plastics through tubes, temperature proiiles produced by vigcous heat of -

fects, temparature distritutions in a hot fluid entering a cald pipe ithe Graciz
pteblem), ard the thickness of falli~g filme in wettod-wall tewers. Numerical
sojutiong can {reguestly be vbhizined when probleras ars tec seraplex for

analytical solutions. 'i'he current developments in high spued ,co;nputing

tschniques open up tremendous new frontiesrs for the further development of
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fluid mechanics and transport processes as avplied to.chemical angineering.
Somse examples of problems attacked by numerical mathods ave the study of
flame propagation, the iermation of shock waves, ilow through nosnies, avd

flow arpund solid cbjects. Experimeantal solutions o axtremsly:compisx..

probleras form the basis for many industrizl design calcwlationa in diffusional
operz.ions, hcat transfer, and chemical kiretics. The experimenta! data can
usually be correlated in terms of seveial dimznajonlesa groups. 1he minimum
number of correlating parameters needed can be dedvced directiy from the
egquationsof change when tl:).ey are written in dimerzionless farm. Such swethods
have proved quite usefui in analyzing the flow around cyliandars, the evaporation
of droplete, and the flow patterns of convection. In fact, the dimensional analy-
sis of the basic differential equations gives the ju‘tﬂicatiof‘a'for the friction
factors, drag factors, and j-factors. Hence even for probv_.lém' with tuibulent
flow in complox geometries the equaiions of change can be useful even though
their analytical or numerical solution would be impossible.

In this paper we begir by giving tlie eguaticng of changs in th2ir most
general form in terms of the fiux vectors. Most bocks on fluld mechanics
do not give these ejuations for fluid mixturee or ior systamas wiih lemperaturc

4

gradients. Frequently these equations are quoted incorrectly and incompletely,

¢
L

it is hoped that the summiary given bere will be of use. 'We nlqzhtﬂpxocm:d to
give the expreussions for the flux vectors in terms of the tragsport coefficients.
It iz at this stage where approximaiions are generally m.xdt sencerning the
mechaniegm of the transport processes. 'I'he geveral results of the therms.-

dynamicae of irreversible pra-esses are sct forth here. Finally we discuss
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the transport coefficientr and their relation to intermelecular forzen. Stuce
the chemical engineer has to daxl with fluids of widely varying physical
properxties, this aspect of fluid mechanics is of coneiderable smportance,

Inasmuch 28 this subject has already been treated quite extensively ina v

racent review article (1), only the main pointa of the dircussion are given



WIS-ONR -7
12 May 1954
==

i. The Equations of Chainge in 'I‘g;ms of the Fiuxes.

The behavior of a flawing fluid in which heat and mtsd tranefer i taking
place is described by the equatjon of change, along with the tharmal and
caloric equations of state. The »quations of chanée are differentisl equations
which describe the changes in th: macrescopic propatties of the fluid {for
ex.mple, the local density, stream velocity, and temperature) in terms of
the flux of maas, the flux of moment;z:n. the flux oif energy, and the chemical
kinetics. First we discuza these equatinns and give the meaning of the various
terms contained therein; then we proceed to lndicate the Llmite of their sp-
plicability.

2. Summaiy of the Equaticnc of Chan&:r

Th= basic equations of cuntinuity, motion, and enzrgy balsace coxrespond
to the fundamental principles of conservation of :nass, sacinoatura, and ensrgy
respectively. They have been derived {or vety general conditicas both in
classical and quantum the‘m'y.*l In tezxms of the fluxes, these equations of
change for = {luid mixture coantaining n. chemicai species ave:

Eguation of continuity for cemponent i :

Df)f./Dt = “\Pt(v'ﬁ) = (V°j_t) + K; =420 (1.149)f

Equation ef coatinuity for the fiuid as a whoie:

Dp/Dt = - p (Ve1) {11b)

i " ’ 3 N

T The derivation of the equatione of change from the Bolizmann equation for
diluie monatomic gases is given in MTCL, §7.2-c.d,¢. The anzlogous
derivation fur denae monatemic gages is yiven in MTGL. §9.44.
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ERexziien of motion:

Ne

Da/Dt = -(/eXV-P} + (49) 2, aFs 12)

E.jaation &f enargy balarce:

e

DO/t = -0ipHP-q) - (UpXpr V) + (o (feB) 9%

‘n these equzitions the substantial derivative D/It = €/t 4 (v. V) represents
the time rato of chinge following a fluid element which i3 moving with a
v;shcny Y. T& symiols j; ., .‘.’, » and q represent the (hpus of mass,
memectum, and energy with respect to the mass averuge velocity ¥y . Thege

flaxes may be broken down iato several parts:

W= 1{@ +]_tm T NS (14)
P = pL +p” (19
9 =47+ 9P+ g™ q"

That i3, the mass flux includes components due to gradients in the conc. atra-
tion, temaperature, and pressure and an additional companent due to external
forces. Ths wwmeentum flax (pressure teusor) racludes a term associazed

with ths statc presasure p and arother associated with viscose siragses.

H It sheuld be memticued that the § in Eq. (1.3) i the thermodynsmic interual
emsrqy (per wnit massf, and does not include thz Winatic ensrgy adaociated
with tne siream velocity or the potentis! energy associated with the astersa)
forces.

The symbei K; ctands for the net rate of productisa of chemical species 1
by ciesnical yascilpn, in unis of gw/zsc.
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Aud (he energy flux includes terms due to temperature and cenceatration
gradiénts, .a. .t;zrm which accounts for the energy flux acca.m'pany.‘mg difiusion,
and the eanergy flux due to rudiation. xplicit expresaions for these varioua
fluxes are given in §2.

Acc;x;ﬂng to Eiq. (1. 1la) the masa density of apecias i ccn.tlin.ed in ,a’
fluid element ch'nnges fo.' three reasons: the firsti term on the right indicates
the change due to the fluid expansion; the second term accounts for the change
due to diffusion proceeses (thic includes ordinary, thermal, pre;nure and
forced diffusion); and the third term renresents the change due to the produc.-

tion or loss of species i by chemical reactions. When tha n_. eqguations

<
given in. Eq. {!. la) are added together, one obtains the overall equation of
centinuity, £3. (1.1ibj. The laiter indicaics that the dengity of tho fluic as

a whole changes only because of the expansion of the fluld as indicated by the
single term on the right,

According to Eq. (1.2) the velocity of the fluid element undergoos a
cha.ngcrb-lcluuue of thc gx.'adiont‘ in the pressure tensor and alazo !;ec;uae of
the axtorn;l.gorcel Acting on the various chemical specizss preseut. Siuce
the px.'eilure tensor .may be written ae the sum of iwo termsz, the iirst terin
on the right hand side of Eg. (1. 2) contains two terms: -(1;’}3) Vp which
rcpré%ent; the acceleration .of a il‘uid element because of & gridi.ent in the
static pressvre; 2and »(1-’?3( V-g‘v)) whick gives the deece.lera.*-ion of the
fiuid siement becauss of internal frictiva {viscsua atragese),

Accorpding te Eq. {1.3) the internal enexgy chr.gas for the fclicwing

reasons: the first toerm on the righl represents the change due o ennvay



WIS-ONR-7
142 May 1954
-4
flux (this includes thermal conduction, energy flux due to a concentration
gradient, energy transport by molecular diffusior, and energy transport
by radiation); the second term Includea both the encrgy change due to pV-
work, -(I/P)P( V.v) , and that due to viscous dilsipation*, —(l/‘P}(p(v): Vv)
and the third terin describes the change due ¢{c the work done by the diffusing
mnlecules in overcoming the external forces,
The equations of charge along with the appropriate boundzry conditions
form the starting point for any mathematiczal study of fluid flow, heat trarsfer,

and diffusicn. For the complete siatement of the prouiem, one also needs to

specify:

p=pPTeo,pe, ) )
1

¢

wiich are the thermal and c .loric equations of state respectively. When

explicit expressions are introduced for the flux vectovs in texms of the

transport coefficients, then there appear in the squations ¢f chang» the co-

efficients of diffusion, viscnsity, and thermal conductivity; the dependence

of these quantities on the termperature and the mass-deunsities of the various

species present also have to be specified in the solution of an actual problem,

¥ The viscous dissipation terms have heen included in the annlytica! solution
of only several problems: flow in capillary tibes by Hausenblaas {(17) and

by Brinkman {4}; filow 1aconcentric cylinders by Weltmanno and Kuhn (43)
and by Blok {2); {flow nzar a rotating plate by Millsaps and Pohlhausen (30},
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b. The Equations of Change for Temperature and Euntrepy

The equation af energy Lalance as given in Eq. (). 2} i3 not in ite most
useful form for many preblems. In heat transfer preblems, for «xemple,
it is conaiderably mwore coavenient to rewrite the snergy equation in termu
of the temparature. And in problems on sound waves, daicnations, and
flow through nozzles, it is moze appropriate to work with an sguation of
changs for entro-.py. Furthermore the entropy equation is izapuartant in
the forimulation of the thermodynamics of irreversible piecesses.

The egquation of change for temperature may be abtained by using Eq.

(1. 8) to rewrite Eg. (1.3). When no assumptioas a¥e juiidh, the-{iral
result is;
pCy (DT/Dt) = - (V:q) - (p: V) + {i- T(2p/AN(V-)

N -

e QT () + KL + (- TORATACTi )] (19
o ne .
2 (j F)
)
in which the Jderivative ‘(ap/a'r) is taken 7t constant compogitisn snd
conntant,. woclume. ¥or an ideal gas the ierms containing (p - T(dp/aT))
vanigt, and for a fluid consisting of a single chemical podcins, ke last
two termi (these 1nv;iv1ng tha summations oever i) nced not be conmidaoxed.
Herce i!: m§3t heat transfer problems with {luld flow, aze Aas the zqua-

tions 0f coatinuity (Eq. (1. 1a)), the equation of mntien (E;;; {1.2)), and the
equation of eneruy balance jn termr af the temperatuce (Eq. {1.9)), which

have to bs golved alouy with the appropriate initial and bhoundary conditions.
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Furthermorec one needs the thermal equatlon of state '(F.q. (1.7)) and the
equation for C,,(T,yi.?z, . 'Pnc) which is obtainable from the caloric

equation of state in Eq. (1. 8).

The equation of change for entropy can be obtained from the equations

cf change as given in Eqs. (1.1, 1.2, aud 1.3) and the differential y~lation
TdS = dU + pd(i /f\; - i’( 1/m1)dj'.>u’f)) » in which |.11 is the chamical

prt"\tials (or partial molal Gibbs free energy Gi). The equation of change

foxr entropy can be writien in the form
P (Dé /Dt) = —(Vg) + 9 49

in whick g is the fiux of entropy and g is \he rate of production of entropy.

These quantities may, afier conaiderable minipulation, be written in the form:

1

g = (1/T)q" + 7 (Si/me) 4y | (1.11)*

g = —{i/T i( Ny) - (VT " V)
(st

- (TNqM. Y In T) + (1M e,

S=)

~~
!”J

G e e o s e o e e

§ All partial molal guantities used in this article ars on 2 Ypszr molecule™ basias.
This somewhat unugual conveniion is employed becaure of the fact that ii is
cusiomary to define most kinetic theory quantities on this basis. The usz of
thermrdynaraic quantities per molecule then eliminates the aphrearance of
Avogadre's number throughout the equations. .

Q
‘!‘ Here the total energy flux has becn arbitrarily separaied inte two parts, thus:
{m {d) Fh A
qg=9 +9 11%q)
in which Ne
{ m 1] n i AN AT Yk
A PP ea” e Ve Z(Hi/m)i (aty
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in which ry and Y, are the net raie and the “chemics! affinity® of the oth

4
¢hcmical reaction (these quaniiiles are defined in. & footnote below! ), and .

Ay s Ne
A= (1lm‘)§(aw/bﬁj>w W + (Vi/m)Vp - By 49

The quantity A . may be regarded as a driving force which includes the
concentration gradient, the pressure gradient, and the external forces,

Equation (1. 11) indicaies that the entropv flux is mude up of two compo:.)cnts:
the first tervn i8 the reversible flux cf entropy due to heat flow, and the second
term is the flow incidental tc the diffuninn processes. Eq. (1, 12) indicate.
that the raie of irreversible entropy production is a reeul: of ths various dis-

sinative phenomena; the first term is the contribution due to mass transfer,

f Suprose that the chemical kinetics of the reacting mixtures may be
described in terms of a sel of ny; chemical reactions, which may be
itten aymbolically thus:

.y

A13 [11 + A‘ZS !.2] L = &1‘[1] 5 bz: [Z] toe- (1»113)

in which i indicxtes the chemical formula for the ith Apecies and A,
and Byg are the integral stoizhuometric factors in the o'h yeaction for the
ith gubstance. Then if kg and k} are the rate constants for the s'h
forward and backweard veactions reespectively, rgz snd Y, are dsfined by:

= (kg ffAh ‘F:h"') - (k.; {15“ o - ) (1128)

Y, = - Z (Bys = Pus) iy (142

in whick the f; are fugaciues.
The quantities rg and Yg are theo "fluxes' and "“drivirg forces"
raspectively,
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tie second duw to viscous affects, the third due to heat transfer, and the last
dus to chemical reaction, It ehould be nuticed that according to Eq. (1.12)
the raie of entrcpy nroduction g can be written as the sun of products
of fluxas and drivicg {orcez (the latter are zometimes called "affinities).
Thie is an important result which can be used in conjunction with the thermo-
dynamics of irreversible processes to obta:n information concerning the
reletion between the fluxea and the transport coefficients. This i8 discuesed

furcher in §2.

c. Applicability ¢{ the Equations of Change

Although the equaticns of change as given above are general and apply to
any fluig, they ~»e clearly uaeful only under such conditicns that it is physical-
ly meaningful to speak about point properties. The definitions of local deusity,
velocivy, and temperature 2rc reascnabl only if the tluid can be regarded as
behaving as a continuum. When there are large differences in the macroscopic
auantities over distances of trh.c orxder of a mean free path, the distribution of
the velocitiea of the molecules daviates considerably from a Maxwellian
distribution. Under these conditions, the concopis of local compusitiaon, velocity,
and temperature become meaningiess. Twe wsll-known examples of a fluild under
such a condiiion are: {i) an exiremely dilut2 gas {cxv "Knudsen gas"} in which the
dimaeasions of the containing vessel or an object immezsed in the gus are of the
same ordar of magnitude as the mean free nath, and (i1) & shock wave in wh -h
the macroscopic properties as a function of the distance undergn an abrupt change
within a distance of a few mnean fice patha. In both these cases it 18 meaningless

to gpeak of point values of the mwacroscopic variables.
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One might well question the applicability of the equations of chenge %o the

deacription of turbulent {low. As the flow conditions changes {syom laminar t&
turbuleat, small eddies oppear, and there is superimposed on the overall
flow a cumplex paitern of more or less random motions. The dimsnusions
of these eddies are aiwaya large comparsd to the mean free path, so that
the turbulent motion is macrescopic rather than molecular. Accordingly,
the concept of the fluid as a ccatinuum remains valid, and the ordinary
equations of change may be used. In these equations the variables refer to
instantznzous values st a point. For most practical purposes, however, we
are intereste:;i in the values of these quantities averagad over a tixne long
compared with the period of fluciuations. Hence, in tm‘bulq:}t flow, the
equations of change ziven above are modified by time-averaging to obtain
relations among the average macroscopic variables. When this is done
one obtaing 2 set of time-averaged aquations of change whicl ditter in two
respacis from the original eguations: (i) the variables and fluxes sppcaring
ir. the equations are now time-averaged guantities, =nd {ii) there arz uddi-
tional terms npsociated with the correlations of the tfluctuations in the various
physical properties (in the equation of motion, for :xample, one okttains the
“Reynolds stress-~e"). The explaining of thuse added terwms is one of the
principal problems of turbulence. The eimplest theories for thiz are the
mixing length theories, which are analogous to the mean free path theories
aof clementary kinelic theorieg. Andather even simpler approach is to presume
thar turbulent iranepert iz analogous to laminar iransport 2od thue to introdure

the gddy coefficients cf diffusinn, viscosity, and therms) conductivity. These
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quaatities are not consiants of the fluid, bui depend on the position in the fluid,
the Rsynrlds numnber fcr the flow, and aldo on the scale of the turbulence. Hence
the w2e of eddy transport coefficients is not too satisfactory. A sumunary of
the present state of experimental and iheoretical knowledge «f the Reynolds
stresses and eddy viscosity has been prepared by Schlichting {(35); and the sub-
ject cf cddy diffusion ia summarized by Sherwood and Pigford (39). Other
racent work on mass and heat {ransfer in turbulent sys‘eme hes been done at
Califorrnia Institute of Techuology by Schlinger, Sage, and colizboraiors (8,
36, 37).

in flow systems consisting cf more than one phase, such as one encounters
in induz2trial contactir ; procecssa, the equations of change are val:d in each of
the phases concerned, but the solutions to the equations of change have to "match
up™ at the interfaces betwsen the phases. At the preaent, there is only meager
knowledge 23 to how the solutions to the ¢ juations of change should be joined
at the phase houndary. inasmuch as very little is knowii aboui the mechaniam
of interphase mass, momentum, and energy transfer.

Recently two groups of investigators have studied the probiem of the
mechanigm of interphase mass tranzfer. Scott, Tung, and Drickamer (38)
solved the differential equaiions for equimolal diffusion acrose su interiace,
taking into sncczunt the fact that the interface itself would provide an additional
resistance to the diffusional process. Subseauent radio-tracer experiments
of Tung and Drickamer (40) indicated that the interfazial resiztance can in-
fluence very markedly the corncentration prefiles during diffusior. Another

appraach to the proble:n was taken hy Emmmert and Piglord, (13) who studied
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abserption in wetted wail towers in terms of accomranodation coefficients.
They alsc concluded that interfacial resistance is of cansiderable importance.
Certainly this euestion of the mechanism of interphase mazs-iransfer needs
further study. QOne aspect of the subject of interphase voass-tranafer has
been exhaustivsly studied by chemical engincers, namsly that of correlating
overail mass-transfer data with flow variables accorilig to dimensional

considerations. An excelient surnmary and evaluaiion of this materisl has

been given bv Sherwood and Pigford. (39)
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$2. The Fluxes in Terms of the Transport Coefficients

The equatlons of change 1in terms of the flux veciors as given in §) have
been derived by means of non..equilibrium statistical mechanice, According
to statistical mechanics the flux vectors in turn can be expressed in terma of
integrals which involve distribution functicna. Ultimately one woulad like to
follow through this line of attack and obtain expressu ns for the disixibution
functions ard thereby express the flux vectors in terms of the forces betwesn
the molecules in the fluid and the various derivatives of the macroscopic
properties. The complets development of the connection between the flusx
vectore and the intermoler-ular for~=2s has beeu worked cut only for certain
special tvpes of molecules and for certain limited conditions: (i) For the dilute
mcnatomic gas the Chapman-Enskog theory (6} gives the tlux vectors explicitly
in terms of the transport coefficients, which in turn are expressed in terms
ef intermolecular furces as described in §4. A considerable amount of
computational werk has been done for the dilute milticomponent monatomic
oas mixtures with small gradients, and it is possible to predict quite accurate:
iy the ilow properties under both classical and quanium conditions. {ii} ror
the dilute polyatomic gas a general theory has been devtloped by Wang Chang
and Uhlenbeck (42) arnd also by de Boer {16} but no numevical results have yet
been obtained whereby one can relate the transporr coefficienis te the inter-
molccunlar forces. (1i1) For the dense monatomic gas formal resulta have
baen obtairned by Xirkwood and coworkers {21} and by Born and Green {3)
but much work needs to be done in order {0 make these resuits of praciicai

value.
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For a fluid made up of any kind of mulecules and \'\ndez any atbitrlary
conditions nf temperature and pressure, it is nol possiblie at the preseni time
to use statjstical mechanice tc obtain the form of the flux veciors and to derive
expressions for the transport properties in izrms of intexrmolecular forces.
I"ar suchn a “general fluid", however, a certaln amount of information may be
obtainod from the thermodynamics of irreversible processes. 1t is p‘eanbhla
to derive the form of the flux vectors, and by rneans of the Onsager '"reciprocal
relations" io ubiain certain relationships between the transport coefficients.

It should be emphasized, however, that the thermodynamic appoach cannot
lead to any expressiong for the trangporti coefficients in terms of the molecular
properties. Hence we summarize In this section the most important useful
resuiis which are obtained about the flux vecters from the thermodynamics

of irreversible processes and other scurces.

a. The Theimodynamics of Irreversible Processea

In Eq. (1. 11) it was found that the rate of entropy production could be

written as a sum of products of fluxes and driving forces. That is:

Incem + 12

g = {(4/T) ARS & 2:1)

n=1
in which the J  are the various fluxes and the X are the various driving
forces or "affinities.,” These fluxes and forcer are summarized in Table I.
In general, any driving force can give rise to any of the fluxes. For example,
if there i in a systeex both & miee gradient and « temperature gradient, the fol-

lowing fluxes are cbserved (i) mass [lux due 1o the concentraiion gradient
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‘Table I

~luxes and ¥Forces in a Flowing Fluid

Flnx In Force, xn

| (AN,
e

~ N4

- Vi
VYT

B + Y

A
r

10

Notes: The quantity /) is defined in Eq. (1.13), and r, and Y’
are defined in Eqs. (1.12b). The subscript i goes from 1
to n. (the totul number of chemical species present), and s
goes from 1 to ny (the total number of chemical reactions
taking place}. The quantities rg and Y, are scalars; j;

(h)

and q and thair amsaciated forces are vector quantities

with three components each; and pw) and Vv are azccond
order tensors with nine comvponents each. Hsace. zltogether

we arc concerned with 3rn. + n, + 12 fluxes ard an equa)

number of forces.
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(ordinary diffusion); (1i) energy flux due to the temperature gradiea; {{hermal
conductivity); (iii) mass flux due to the temnperature gradient (thermxi dif-
fusivir 0x the "Soret effect'); and {iv] enargy flux dus to the smass gradisnt
(the diffusion-ther moeffect o.” the "Dufour effect'). We see thus that tasre
are two types of effects-~..2ircct effects, such as (i) and (ii).' and coupled
effects, such as (1ii) and (iv).

It is assumed a3 a pos.ulate of the thermodyramics of irreversible

processee that, for situations not too far removed irom equilibrium, the

fluxes may be written in the form:

J. = 2, omkn (22
which states that the fluxes are linear functions of the drivieg forces. The
a . ave referrcd to as the phenomenological coesfficients. The diagenal
elements a,, are the coefficieats which repreaent the direct effects; the
off--diagonal elemenets a,.. {n # m) are the'phenomsnological cosfficients
for the coupled effects. The expressions for the fluxes obtained by statistical
mechanical considerations are of this form. Also, such "linear" reisations
are found in connection wiih oiher types of physical and chemical phenomena--
for example, in thermomagnetiic effects, thermogalvanic effects, electrokinetic
effects, etc:.=| Linecar relations should always be adequate whon the systems

are sufficieatly close to equilibrium. Hence the pastulate of Eq. (2. 2) defines

the range of applicability of the thermodynamices of irrevex aible processes.

“ Complete discuasions of these applications may be found in the recent muno-
graph of d¢ Groot {12).
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The fundamental theorem of the thermodynamica of irreversible proceases

is due to Onsager (31). This theorem states that for a “proper chuice* of the

fluxes and forces

These equations are commorly referred to as“Onlager's regiprgcal relationr','
and are useful for relating coupled effects such as the Soret and Dufaour affects.

Let us now consider the application of the linear law of Ea. (2. 2) and the
Onsager reciprocal reiatjions to the study of transport phenomenaz in fluids,
for which a proper choize of the fluxes and forces is indicated in Table I.

When the linear Jaw for the fluxes is applied to the flux veciors which are
equivalent to the {irst approximarion in the Chapman-Enskog kinetic theory.
That is, one obtains expressions for the flux vectors which are linear in the
firet derivativesa of the macroscopic variables and do net contain higher
derivatives or powers of the first derivatives.

Hence, if the svstem under consideration is in a state not too far removed
fecom equilibrium, the linear law of Eq. (2. 2) indicates that each of the components
of the fluxes in Table | ynay be written as a linear combination of all ti.e components
of all the forces in Table I. However, if the system is {isotropic, it may be shown
that those termis which correspond tz 2 coupling of tensors whose orderxrs differ
by an odd number do not occur. Thue no coupling occurs between j; or q_(h)

(both vectors or first-order tensors) and B(V) (a secend orde tenanr! or ry
{2 acalar or z=ro-order itensor). Coupling does occur beiween the heat flux
Ci(h)

nd the mase flux i; . regulting in the Soret effect and the Dafour eifect,
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Coupling also cccurs between the momerntum flux and the chemical reaction
rates, since there is a difference of two in the order of the tensors. Nao.

experimental observations of such an effect have, however, been reported.

b. Momentumn Flux and the Viscos:ty Coefficients

The application of the liicer law {Eq. (2.2)) to the componenis of the

viscous pressure tensor p(v) and the force - Vv gives:
NG S hk .
P = = 2 2 a (33,/0%,) (24
Nwj Mwi

hk
The sot of phenomenological coefiicients a

m 18 @ matrix of eighty-one

~lements, but atl of thpse are not independert. From: Onsager's relations
hk nm :
one #ces that apny, = &k ; And since the pressure tensnr js defined to be
hk L

symmetric, it can be stown that apn, = anm - Thon Eq. (2.4) can be,

simplified to:

3 3
m -~
{ N\ v TV ¢
by’ = -(t12) 2.0, An. LoV 12 + (3%/01, )] (2.5)
Nuj Ma}
80 that there are only thirty-six independent coeffigient s a::}:n )

if the further asstmption is made that the fluiq is isotropic, then it can be

shown that the number of independent a:l;ﬂ 18 reduced to two. The pressure

t

tensor then has the form:

P - —p LD+ () ]+ (BE-UVO L @9

in whichn p and K arc the two independent phenomenological coefficients,

which are called the coefficienis of shezr and bulk viscosity respeactively.

- e e ev m e me m m me e e

» :
» Typical diagonal and non-diagonal elements of this tensor are:

@ Wy | (Bu-py O NG Wy L 0 (2%, Oy )
pxr_ - 2}"5, +(:'* TARox 7 53!1 ?.t) 4 Py = _f"(\bj+ b;‘) P:j;
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The cvefficient of shear viscosity is imporiant in flews: ir ahichwméeu!.vn
plane laevars of the fluld move with different velocities, ' Th cosfiigient of
bulk viscesity is important in the pure expansion of & fimid.

In 2 ilute gas made up of molecules without interngl dxgstsssfdsscdom,
the coefficient of bulk viscosity is identiczlly zero. ~1tw't;=a:=.-.-Mn that the
presence of internal degrees of frecdom, even in a dilwtg gas, M‘czl a
finite bulk viscosity; and the bulk viscosity has also beg= fho%= 5.2 man-=erc
ix & dense gas or liquia. Nevertheiess the effact ummy AwspiLi, and it is
often;eufficiently accurate to neglect the bulk viscosity. Apupesy of the wpit
of bulk vizcosity hae been given by Karim and Roseaksnd: {24), X the fluid
under conaidaratior is incompressible (then (Vew) ;1.0;)', \ﬁu JuBt tirm of
Eq. (2.6) vanishes, and the coefficient of bulk vissszliiy-<Ress wei-euter into
the equation,

For the flow of a fluid in the x-direction with a velocity gradisnt in the

y-direction only, Kiq. (2.6) simplifies to:

P:;’) = -p (% /dy) (z7)

This i8 the well-known“rlewton" 8 law of vilcosity.whwﬁ ztates that the
registance to viscous forces is proportional to the velgeity gredisnt, the
constant of proportiona.ity being the coefficient of sheaxy vissesily. The co-
efficient o shear viscosity is determined experimantally by considexing the
fiow of a fluld in a syetera of sutficiently simple geommetry that ths equaticn
of motiou can b2 solved after the expression {or the vizcaus ebress given in

Ta. (2 7) has Leen gubsiliuted 1nto it.  in this way one analyses ths dala for
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capillary tube viscosimetars in terms of Poiseuilla's law, and the data for
concentric cylinder (Couette) viscosimeters in terms of the Margules
equation.Kq. (2.7) then forms the basis for the entire subject of viscosimatry
of newignian fluids.

Thece ase inainy {uld which do not hehave according to the above
f'newtonian®) form of the pressure tznsor, and such fluics are referred to as
“non-newtenian®. Examples of non-newtonian substances are glass, plastics
melts. drilling muls, "bouncing puity,* toothpaste, and concrete. For these
substances the asswipiion of smail gradients, made in connection with Eq.
(2.2), is nct tenable. Hence the pressure tensor depends upon higher deriva-
tives of the velocity components and on higher powera of the velocity gradients.
The inclusion of thess additional terins would reguire the introduction of addi-
tional phenomenological coefficients; aperoaches of this sort have been quite
limited.

In connection with the establishment of this relation between the shear
stress and the shear rate {r non-newtoniac flow, considerables succers hae
beeca obtained by Eyring and his collaborators (15) who have applied the meth-
ods of reaction rate theory to various pusiuvlated physical pictures of the elemen-
tary processes going on inside a fluid. It is this theorv which predicty thxt the
shear vigcoaity depsiwds on the external force according the the hyperbclic sine
law.

Aciually most of the etudies of the {fiaw behavior of non-newtenian substances
have becix based on sirnple analyiical assumptions conceraing the relationship

between the ahear atreass (p‘x\y)) ard the shear raie (dvx,l'&y). This i8 alsc
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tantamwcunt to saying that some assumption is made “oncerning the dependence
of the coefficient of viscosity on the impressed shear force. By means of these
assumed "modelsY, one can sclve the equation of motion for varicus simple ge-
umetries {such ag capillary tubes, concentric cylinders, etc.) and obtain for-
mulae which 2re useiul for the viscosimetry of non-newtonian substances. (33),
Formulae of this sort are available for various idealized non-newtonian models,
such as the Bingham plastic, thixotropic zubstances, and power-law madels
{which just assume that the shear rate varies as some power of the shear stress,
or vice versa). Unfortunately many investigators continue to analyze the flow
data for mon-newtonian subetances in termes of Paiscuillals law and other new-
tonian formulae, thereby obtaining “effective viscoaities’ which are valuable
only for znz2lyzing flow in systems geometrically similar to tiie viscosity meas-
urement apparatus, The study of the flow and deformation of theze non-newionian
substances is now generally classified under the heading of *rheology,'* Tuda
subject inciudes the behavior of subgtanc2s under siress, all the way from pure
elastic deformation (Hooke's law to pure viscous flow (Newtou's law).

c. Mass and Flcai Flux and the Coefficients of Diffusion and Thermal

Conductivity
The application of the linear law {Eq.(2.2)) to the components of the heat
and mass flux vectors and the corresponding driving forces given in Table I

gives (after some algebraic rearrangement):

fi(m - e A vinT - p ?; (ac.,':‘oj) é, (z8)
= —ae VinT  — p 2 (8 /9 d; (79)
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dj = (p/P) Dy = (/) VP + (/e 2
Ne
= (p/pmy) Z (3 /opi)ry, Voo

in which the driving forces d;, closely related to the Aj , &re defined thus;

+ LRV /Im) = (p/p)] Vin p
- (py/0p N pE; - kZ,}Pk'-EL) (210)

In the above equations the index ( refers to the tempexature varizble; the ather
the other subscripts {i, j, k) refer tc the chemical speciegd gresent in the mix-
ture. ‘The following restrictions have to be placed gn the 3 ;: (1) because af

the Onsager relations the ajy are symmetric; (ii) becauss of tie fact that the

ji are not all independent (i.e., ?‘l ji = G ), the aij must in addition satis -

-~

rslatlongs 2o 4 Timo
fy the relations: "“laij = 6_,} & = 0.
The app.icion of the Ounasager relations to the phenomenological cegfficients

wit! one 0 subscript gives:

aic, = c’}{)i = Di (?.".‘.')
and we have equated these e¢lemente to the ‘‘multicomponent thermal diffusion
coefficient, » DiT . Thus ths reciprocal relation in Eq. (2.11) givese the con-

nection between the coupled effects known as thermal-diffusion and the diffusion-

thermo effects.
The application of the Onsager relations to the remaining vheuumenological

coefficients gives:

A = G Lj #=0 (18
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We vew have to relate these quantiiies ie the "multicorapenent diffnsien coef-

Il
ficients, " Dy ;, but this has to he done in such a way that Eqa:{2: i8) is obeyed. i
Inasmuch as the Dij are customarily defined so thai the: Dy arum ddsntically

z21r0 (9), the relationships between the D and the aij axe Yather involved:

ij
Ne
ai.j = (anQJ. ./Joz P) [_ P mj D|j T 12: 9km‘mkDﬂ< . (2.13)
e ,
Dy = - (pp/mmimp) [ (1/p) ey + (17p) é . (214)

¥ X
It cheunld be noted that these Dij are not symmetzic with reapect to an inter-

change of the subscripts 1 and j

- - .- m - m -, e - 1
" - For a-two-compenent mixture the “multicompanent difftision ¢pefficients"
Dy j become the ordinary binary diffusion cocificients %g‘ » and then
&g {){.‘ . For two-companent systems it is zlze cust®mary to define 2
“t}wrm diffusion ratic, " }cT. according to the relation: B

ot -

k‘.‘ - (fllnzw’lmz)( D|T/$|Z'.) = - (f_/h"m;ml)(l}: /bn_) . (2.14.3)

For this definition of kp, compuiwnt 15 goes t0 the cald region if k> 0
énd to the hot region if kp< 0. 7he diffueion coefficients ij and the
thermal diffusion ratio kT defined thus are in agxamumext with the ac-
cepted definitions of the previ? 8 workers, and in oarticular with the text-
books oi Chapman and Cowling 3ad Grew and Ibbs (iG).

For a three-component mixture ihe multicompunent diffusion cosfficients
are not equal to the ordinary binary diffusion coefficients. For sxample,
the kinatic thaory of dilute multicomponent gase mixturn#,‘ﬁhq_wa that:

i o n_‘l-(n‘5/m7_/w13 - 5512. ]" | (2.14b)

|
L hy Dz + nzDia + nshp

Di?_ = Dy



WIS-ONR-7
12 Md\/ 19 He.
A

We now can substitute the results of the application of the Onsager relations
(Eq. (2. 11) and (2. 13)) into the expressions for the heat and mass fluxes {(Eq.

(2.8) and {2.9)) tc obtein:

b _ 1 ni Y 2 :
q 3 VInT b 2. (Dy/pp dj (215)

5 T e,
i = =Dy VinT + (n*/p) 2, mm; Dy d (24€)

3=l
in which the phenomenological coefficient ag, still appears. The quontily 3pof T
is not guite the coefficient of thermul conductivity as customarily defined, #s
can be seen in the following way: Imagine that Eq. (2.16) is soived for the d
and that these quantities are in turn substituted into Eq. (2.15). This will then

indicate that q(h) has other terms proportional to VT hesides the term con-

B3

taining “00. When al)l of these terms ai‘e combined, the cecefficient of ithe re-

sulting t=rm is detined to be the coefficient of therrnal conductivity. This par-
ticular choice for the definition of 8 made for the sake of consistency with

exisiing troat ises on kinetic theory, such as that of Chapman and Cowling {§&)

When the rearrangements just described have been performed, one finally
obtains for the componenta of the energy flux vertor (as given in Eg. {1.6))

the following:
q (™)

= -AVT (2.47)

m —
g™ =+ 2, (Hi/m) g
b 1‘:"‘ -~

ne T
q® (kT,'n)ZZ(nj/mi)(Df/é()cj)(&{m—%m) (219)

- il

g
The {irst tern, q(T) , ie the contribution to the energy (lux due to thermal

(248)

ccnduction and is the coefficient of thermal conductivity., The accond terim,
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(d)
q

-

» is the exgrgy.flux associated with the diffusional proczsses occurring.
Thase twea urm&;a the most impertant coutributions. to. the energy flux.
The. txird texra, !(R),.il related to {but noi equal to) the ensryy flux resulting
{rom the Duioyx effect. Actually Eq. (2.19) is rigorously applicable only to
2 dilute gan-mekxture.  The expression for S(P) for a'generai fluid is
extremolv..coupl:u. and the effect is amall,

In tho.a.!.n\m ;“;t.-of.‘oqnauoxu we have given no empression for g_") , the
energy {lux dwe ts andintion.  This set oi aquations .appliss only to aystexas
near oqu&lih:iuu'“,.‘,_lf xadiative energy transport is taking place and if the
radiatien is in. i?pﬂlhtinm with the mmatter, then the expression for 3")

is of the same {me as Eq. (2.17) for q(T) .

This condition ic usually =ct

aatipfind and the,¥adistive energy {lux depends in a detailed manner on the

¥

frequency and iptensity of the radiation and the propertiss of the massrial.”
From Iqs. {2.,16) anpd (2, 10) ane obtains the various contributions to

the mass flux vector(as given in Eq. {1.4)}), thus:

-t o Gl e Ne O et .

30 = o 2 mie Dy (i) & oy s, Vor | 2o
() it g: ' — . ‘ I

L Pa +(rp) %.; mim; Dy; [( g_,Vj /my) - ':Rj/.?)} Vinp (2.21)
5 (F} | : e ﬁ L 2 A

1 = (M) % mcmy Dy [(Pj/_f)(y L= ,Zf’ug* )] (2:22)

ke
j fr) - D;r VinT (223)

- . e = -

% The subject of radiative heat tranafer is discuweed further o MTGL, §11).3.
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The first contribution, __ig?) ,» i8 the most important one-~the flux due to a
concentration gradient. Thia expressaion indicates that the correct ,iiriving
force for diffusion is a rather complicated function of the chemi¢al petentials

of all the components in the mixture. The masa flux due to a gradient in the

static pressure, .;i(ip) : has been studied only slightly becnage of - itg rela«

(F)

tively negligible importance. The mass-flux due to forced diffusion, Ji i

is important when aystams contzining ions are under ¢consideration. And the
\ast term, i(iT), is the contritution to the mass flux due to thermal diffusjon.
Thie ccntribution can be negiected except under counditions »f large terpera-
ture gradients such as are carefully maintained in devices: such as the Clusius-

Dickel column (16€). '

¥For two-component systems the mass-flux vectors become considerably

sinmpler. The general exprossion id r the flux of component "1™ {g:

j' = P!YI-W = —(n*p) ime iz (éi + ke Vin T)  (224)
in which we have also indicated the relaticn bztween 'the flu); vector and the
diffusion velocity, ‘_{(ld') . The latter is the velocity with which component
"]1" moves with respect io the mass average velocity. Inasmuch ag the bi.
nary di{fusion conatants are symmetric ( &12 - ,‘Oui \, :aﬁd since =i-l = . ;2,

it follows that:
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V, -V, = (070m) Qi (g4 kp V0 T) 225%

This equation is the usual starting point for discussion of thermal diffusion,

For a two. component systern in which thermal, pressure, and forced dif-

fusion effects can be neglected, the expression for the maas flux given in

Eq.(2.24) becomes:

j1 = ~ (10 /pp) ime Dz Y, = -(0%/p) (N KT/p) i Diz 7l s, (22¢)

in which a; is the activity of component '"1". ¥rom this it can be seen that
it is the chemical potential or the activity which should correctly be considered
to be the driving force for two-component diffusion. When the additional assmp

tion i8 made thai the components are dilute gases, then Eq.(2.26) becomes:

. (3

fy = - (n [P) mym; Rz Wx, (227)
This expressiun can be used in systems where there are remperature gradieuts,

provided that they are not sufficiently large that the thevmal diffusion contri-

bution needes to be added,

- e e = e e e = e -

f For a dilute monatomic gas this result has been generalized for nnu‘ticom-
por-ent mixtures:

> .'nzquy;“’ V) = (2:25a)
1=

e (V In T) Z nnJ/n $’J’ L(D /IIJ"\J} ,-.. I)J

For syatemsa at constani tempera.tu.rc and pressure and with no external
forces; this simpnuco to:

= Vp, 2 Odh o Ci ( z(d) 7;&) ) (2*'25;:’)

in which ine "res*staoa‘cc 1artora " of , are defined as (RT)" /p&)i ., and

C, is the molar concentrztinn of spetdes t . This resull, origiﬁ:illy due
te Maxwell and Stefan, is commoen!y used a8 the stariiuyg point for digcusasions
of \nulticomponent diffusien (20},
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It has been previousily mentioned that the flux vectors defined sbuove are
fluxes with respect to a coordinate system moving with the masg average
velocity of the gas. Sometimes it i convenient to define fluxes with xrespect
to other coordinate framaes. Two examples will illustrate the imporiance of
specifying the reference {rame for the fluxes: (i} The flux, Jl' in moles

per unit arez per unil time wvith respect to the molar avarage valocity (under

the same reetrictions of Eq. (2. 27)) is:
J, = - (pPe/RT) W (2.28)

(ii) The molar flux of component "] -=ith respect to & siationary coordir

nate system is:
Ny = - (Pi}lz/RT) Vx, + ([‘.jl + Na )%y (2.29)

The firat term on the right hand aide is the molar flux of component i by
diffusion, and the second term is that due to the mass motion of the {luid.
Fq.{2.29) is the basic starting point for the discussion of chemical engineer--
ig mass-transfer problems. A large number of the important applications
involve either of two assumpticns: (i) diffueion of "1" through stagnant
nz2w , sothat N, = 2; and (ii) equimolal counierdiffusicn for which I_!l =
-N, . The applications of Eq.(2.29) to various imporizant industrial diffu-
sional operations have been given by Shaerwegd and Pigford.(39).

The sxpressions given ia this section for ghe momentum {lax {Eq.(Z.b)‘;?
the components of the heat flux (Fas.(2.17}) to (2. 12}}, and Jae componeuts

of the mass flux (Eqgs.{2.20) to {2.23)) are general results chtalned from the

tnermodynamics of jrreversible processes and whick apply to bath gases and
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liquids, They are, of cours:. consistent with the expresasions for the flux
vectors for dilute monatomic gases, which have been previously ebtained
from the rigorous kinetic theory of gases.
When the expreasions for the compunents of the mass flux (Eqgs. (2. 20)

to (2. 23)) are substituted into the equation of centinuity for compunent i
(Eq.(1.1a)), one obtains the diffusion equaticrn in its most general form.,
When it is assumed that thermal, pressure, and forced diffueion is absent,
and when it is further assumed that the diifusion is two..component equimoial
counterdiffusion, then the diffurion equation simplifies to"Fick's recond law’
of diffusion. When the expreesion for the momentum flux (2.6) is substituted
into the equation cf motic: (Eq. (1. 2} ). then, if the bulk viscosity is zero, one
obtzins the usual Navier-Stokes equations. When the expregsion for the energy
flux (Egs. (2.17) tp (2.19)) is put into the energy balance equatiun in texrms of
the temperature (Eg.{!.9)} one obtains the heat flow equation in very general
form. “When the assumption is made that viscouz dissipation cffects and p.v-
effects are negligible, then the temparature equation for a pure fluid assumes
a form whick is mathematically analogous to Fick's second law of diffusion.
Hence we see that the equations of change and the exprcssions for the fluxes
provide starting points for heat, momentum, and mass transfer studies which
are mores general than the usual starting equations. Since these equations and
expressions have all been written in vector and tensor {orin, they may be uged
te get the correct startipy poiut for calculationeg in cartesiawn, cylindrical, or

spherical cagprdinates.
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3. The Transport Coefliciente 1in Terms of Intermolecular Forces

S—

In order to use any results based on solutions of the equations of change,
one must know the values cf the transport coefficients involved, and in seme
problems the temperature dengity. and concentration dependence of these
quantities is algso needed. Whenever possible, of courss, experimental data
should be used it they are available. Otherwise, one should use the best meih-
od ot calculation which je consistent with the accuracy desirad. 1In general, the
rmost roliable methods are those baazed on statistical mnechanical formulae, which
relate the buik properties in terms of the intermoiecuiar forces. Heace this sec-
tion bsgins with a summary of the various tvynzs of forces betvieen moleculer.

&

a. Intermolecular Forces and Potential Energy Functions

In principle it is pos#iblz to determine the force between a pxir of molecules
from a priori quantum mechanical calculaticna, inasmuch as the description of
thbe mechanics of any collection of nuclei and electrens is given by the Schro-
dinger wave equation. In practice, however, it is possible to ebtain selutions
to the Schrddinger equation for only rather simple molecular systems, and then
only after making numerous approximatione the physic2i rexlity of which is dif-
ficult to assess. The gquantum mechanical approach has nevertheless provided
2 considerable amount of infoimation of 2 semi-quantitative charactcr, widch
has been of great valus in eatablishing the approximate functional form: of the

inieraction energiee.

- > e W sk e o s = -

&

An elementary discussion of intermolecular forces and emypirical potential
energy functions may be found in MTGL §!.3, and a cocmplete treatmsant is
given 1n MTGI., Chs. 12,13, and 14. See alao the sariier review articles
by Londoa (20) and Margecoau (27).
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In the kinetic theory formulae for the transport coefficients it ies the po~
tential energy of interaction @®")  which appears rather than the force of
interaction F(r) between the molecules in the fluid. For two spherical non-

polar molecules the force and potential energy are simply related according

to the equation:

, 00 (21
F(r) = —de/dr 5 @ = [ Findr

For the interaction between more complex mo! *cules, ihe potential energy is
‘a functinn not only of the intermolecular separation, but alsc of the angles
describi:ng the mutual orientstion of the molecules., From such an angle-
dopendent pciential energy function one can derive both the force and torque
of interaction as a function of t} & distance and orientation,

It is customary, although somewhai arbiirary, to divide intormolecular
forces into two typen--short-range forces and long-range forces. Tke short-
range forces arise when the molecules come close encugh together for their
electron clouds to overlap appreciabl;. These furces are repulsive ard often
highly directionzl. There are some experimental indications of the nature of
short range intermolecalar forcea from crystal structure, propertiesg of sur-
faces, and other properties, but most of our irformation comes from the spe-
cific quanium mechanical calculationg which have been made for specific mole -
cular interactions. These calculations usually are not highiy accurate, inas-
miich as many of the integrals encouniered are 8o complicated that they are

either zpproximated 61 8imply negliecied.



WIS-ONR -7
12 May 1954
.20~

The long-range forces, on the other hand, may he tyveated in a fairly rigor-

our manner. rusthermore, it is easy to give formulae for various types of
interaction which are applicable to a variety of types of molecules. The long-
range forces may be subdivided into clectrostatic, indusilon, and disper=sion
forces. The elecirostatic forcea are those between the various multipoles of
the molecules and are deacribed by clcctrostatics. The induction forces are
those reculting {rom the fact that a multipole in on= molecule can induce a
multipole in the other moleculs, which ia turan reacts with the mvultipole of the
first molecule. The dispersion forces result, in a sense, from the interaction
of the ins.antaneous multipoles which exist even in neutral svrnmetrical mole-
cules because of the electronic motion; these ferces cannot be described cor-
rectly in terms of a simple phyeical picture and are derived by quantum me-
chanical second-order perturbation theory.

For nonpolar molecules the most important long-range contribution to the
potential energyof interzction is the dispersicn fr ce proportional to the in-
verse sixth power of the intermolecular separationn. The short-range fcrce,
which is kncwn > be approximately exponeutiai in form, con-be—furthes-ap—
proximetelyrewponentici—in—form, can ke further approximated by an inverse
power dependence, usually r~12. 1t is theee ceneiderations which form the

justification for the Lennari-Jounes (6-12) potential:
. 6 ’
@(r) = 4e [{am)'* - (c/r)®] (3.2)

in which O is that value of the separation for which the potential eneryy is

zero, and € is the maximum aitractive energy. This potential caergy
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{unctlon has been used with considerable success for the calculation of mary

eguilibrium and non-egqguilibrium properties of dilute and moderately dense

gases composed of molecules which are nonpolar and reasonable apheri.cal.%
Empirical potential snergy functione, such as thz Lennard-Jones potential,
have played a very 3mpor‘ant role in connevtion with the deiermaination of
intermolecular forces. Many chysical properties can be expresased by means
of statistical mechanics in terms of integrals involving the intermolacular
potentiai enargy function. Wien an empirical potential function is used, these
integrals can be evalnated and the results expressed ir terms of the parameters

(such as o and € in the Lennard-Jones potential). Experimental data for some

bulk property can then be used in conjunction with these results (o dete1mine

the potential parameters. Once the potential parameters are known, other

physical properties can then be calculated. This interrelation cf bulk proper-
ties and intermolecular forces is further discussed in connection with Egs.(3.7),

{3.8), and {3.3). Much more quantitative information about intermolecular

forces has heen obtained by means of this semi-empirical approach than by

dirsct quantum mechanical calculztion.

—=?‘T-h; f‘ol-lo‘w-in;; Lennard-.lones potential calculations are described in MTGL;
second and third virial coefficients, §2.6; Jouwle-Thomson coefficient, §3.6;
the Lennard-Jcnes~Devonshire equation of atate for dense gases and liguids,
§4.7; quantum caliculations of the second virial coefficient, §§6.4c and 6. 5c;

transport proprertiesa of diluie gasea, §8.4 Complete tables of all tabulated
functions are given.
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Extensive calculations hava recently besn made’ for gnother empirical
function for non-polar mwlecules, namely the modified Buckinghain (6-exp)

potential encrgy function. This potentiai contains the ‘-6 attractive term,

wut the repuisive componant iz represented by an exponential term thus:

&fr = 1 © 2. e;(p [_o(( )- _l (33)

Rjo

in which theres are three adjustable parameters: the maximum erergy of
attraction € , the separation corresponding to that entrgy r . and the

parameter 0L which is a meavure of the steepnyss of the energy of repul-

afon, This intermolecular potential function represeais an improverient
over the Lennard-Jones votential and has been found to give =omewhat better
agroement between calculated and experimental transport coefficients and

virial coefficients, particularly for H, and He.

. T

¥ calculatione of Mason (28) of the transport coefficients for the modified
Buckingham potnetial are described in MTGL, §8.4. The corresponding
calculations of Rice and Hirschfelder (34) sre described in MTGL, §3.7.
Further discussion of the modified Buckingham potenthl has been given by
Mason and Rice (29).

{ Actually for very small values of ths intarxoleculaz separation r , the
functien given in Eq. (3. 3) has 2 mmaodmum value and approaches minus
iniinity as r approaches zero. This would correepond to very strong
attraction at very small zeparations. Hence, when Eq. (3.3, 's used in
-fatintirnl mechanical calcuiavions, one can set (P(r) x 30 [nr values of’
r a‘t'ﬁ\e sp‘ﬁr ous maximum.
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b. The Transport Coetiicients of Dilute Gases

The earliest attempts to relaie ithe transport coefficients to intermwlecular
forces were based on the assumption that mwoiecules could be reapresssnted as
rigid spheres with diameter Op . Tlese early theoriea were based aa the
concept of the "mean free pathi*--the average distance traversed by the mole-
cules between collisions. A simple calculation shows that this quantity is giv-
Z)'

enby L = (KT/VZpro

R The quaatity TT'D'RZ appearing in the denominator

i8 called the "collision cross-section'" for the rigid-spherical molecule. This
cross-section appears in all the expressions for the transport coefficients and
repres=nts the cross-3ectional area of the imaginary gphere surrounding a mole -
cule, into which the ¢enter o{ an approaching molecule cannot peaetrate.
According to the simple kinetic theory the traasport coefficierts can zll be

expressed in terms of the mean free path and the average nolecular velecity

— *
v = 'VlﬁdT/TT'm . Thug the ccefficients ol self-diffusicn, viscosity, and ther-

mal conductivity of a pure gas are given by:
; 4
D = (@)HFL = LI S
N (1/3) Cp o 3
v Tenk’ T 3 5)
C,«, U SRl (3.5)
“'(TQZ

G ekl A (3.6)
TeE

(34)

w = (13)pvL

li

#

t Transport properties of dilute gases aaf binary gas mixturss nave been
treated in & highly mathematical form in the book of Chazpman and Cowling(6).
An elementary dizcussion of kinetic theery is given in MTQIL, §1.2, and
the kinetic theory of multicomponent gas mixtures ia given in MTGL, Chs.
7T and &, Formulaec in practical unite are given, aand compisie tables for
nee in conjuction with these formulae may be found in.the appendixes., A
gupamary of the presant status of calculating transport and ether proper -
ties of gases and liguids has Lieen given in 2 survey articie written by the
authors (4).

% This discassionn 15 Confinet 1o ¥ considemnhon of the. properties ¢f pure Subsfances. Henve the franspot
C.M‘m'ncni which chorscierizes wass-transer 13 He osfficient 4 seif-diffunon, whuch 1 the mkrd.fﬁu»o:-\
o} .parh.ln o{ Y Rk mess and Size. AHhough this 18 3 Somcabat erbferal quardih, 1t (3 not whoti
witrout apphustion. The inierdif fussn of heavy 1sotopes and thy diffusion of Ortho ar;a rara &,;..;J
are pherngragna cihech (2o be de wonped by Self-dfrugen forealne,
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in which Ch. C

" ard C, are constants; and év is the specific heat

per unit mass, which is (3k/2m) for monatomic substances. According

to the simple kinetic theory treatment all these quantities are (2/3) . Ac-
cording to the detailed theery of Chapman and Cewling each of these guantities
is different: Cp = (3/8) , CP" z (5/16), and C, = (25/32) . This is an
indication that the transport of mass, momentum,.and energy cannoi be
treated exactly analogously to one another as is done In {he simple trest-
menta. Since for an ideal gas, p = mp /kT , Eq. (3.4) ‘ndicates that the
ccefficient of seif-diifusiocn should vary inversely to the prissure and

directly as the 3/2 power of the {smperature. According to Eqa. (3.5) and (3. 6)
the coefficients of viscosity and thermal conductivity of a dilute gaa should

be independent of the pressure and directly proportional to the square root

nf the temperature. Thus the simple theory predicts the correct pressure
dependencs of the dilute gas transport coefficients and comes close to giving
the correct temperatuz;e dependeﬂcc. it also provided the early kinetic

theory workers with 2 means for ~stimating molecular dizmeters from

buls properties,.

‘I'he rigerous kinetic theory developed by Chapman and Enskog and
described in the mcnograph of Chapinan and Cowliag {6) .given an indication
ag to how the results of the #imple kinetic thegry have 10 he madified in
oxder to apply to real molecules rather than rigid spheres, The rigorous
theory does nat in the course «f its developmsnt employ the concept of the

mean free paik. The rigorcus theorv has as ite starting peint the Boltzmann

integro-differential squation for the velocity distribution fuaction. Although
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the details of the matnematical deveiopment are quite intricate the results
for pure gubsiances may be expressed in 4 simple form reminisient of -
the results given zbove jor the simple kinetic theory. Thus the rigoraus

sexpressions for the firat approximations t¢ the coefficients of self-diffasion,

viscosity, and thermai conductivity for a dilute monatomic gas are:

, 3 Jumkl L o
[33]1 8 mrlg P (3.7
(] = 5 Jomer | (3.8)
- =1 14} 'n‘o*z&),r_

25 JumkY A 15k 7.
LU A ol G

in which the Q -functions indicatie the deviation of real gas Lehavior from

rigid sphere behavior,. f

The (L -iunctione are complicated integrals which depend uvpon the
force law between the molecules. When the Lennard-Joner, potential is
used, o in Egz. {3.7), {3.8), and {3.9) i the o i the Lennard-Jones
petential. The .&1 -functions are, then, functions of 2 dimensionless

temperaiure kT/e¢ , in which ihe € is the maxdmum energy of attrac-

- - e e = . o = @ -

T In terms of the notation used in MTGL:

@,
Q& = Q,("ﬂ* : ‘O‘-‘fv\' = ﬂ_}.a Sl )W

Actually there is a whole set of LLPY*  in terms of which the teansport
properties can be eipressed. The onez with indices (1,1) and (2, 2) ars

the most important, jut additional ) ~functions are required for mixtures
and for higher approximations., All of the {): -functions needed ior calcula-
tions may be found in MTGL {18) for the following potentiz! energy functions:

rigld spheres, point centers of repulsion, the Sutherland raodsl, the square

well, the Lennard-Jones {(b-12) poiential, aznd a2 modified Buckingham {£-exp)
potential.
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tion appearing in the Lennard-Jones potential functien. Hence the transport
cnefficients arc¢ expressed as universal functions of a reduced temperature
and dzpend parametrically on the constants O and & which are characteristic
of the substance under considerationn. Hence ii o and ¢ are known for some
substance, the self-diffusion, viscosity, or thermal coadnctivity can be caicu-
lated frovn the above aquatior by use of the tabulations availabie for the ..0..
functions. Orx, if the ceefficient of vizcosity, for exazmpiy, is kwown for seme
subatance  at two difierent temperatures, then o and & for that swbstance can
easily be focurd by the suluticn of two simuitaneous. equations. Thia illustraten
the way in which intarmolecular force information is ohtained from the measur..
ments of bulk properties.

EgRr. (3.7, 8; 9) are baned on the rigoTous kinetic thsory for monatomic
gases, The use of Fqs. (3.7, 8) for diffusion and viscosity of palyatomin gases
turns out to be quite a good approximation, provided that the molsciles ars not
polaxr and not too elongated. Eq. (3.9) for thurmal conductivity, however, muat
be mwodified for polvatemic moalecules by means of the appraximaie ¥Eucken cor -

rectina' thus:

rd

. 5 2 )
[Al, = -\;g'%,‘ L, {%E?v*’%i : (310)

Until the further development of the existing theeories for the transport phernomena
of polyatomic mtlecules (42, :0). the Eucken :Correction - cau be used to a
reasonably good approximation,.f

N

T A theoretical justification for the Kuckea corraction is given in MTGL, §7.6b.
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Besides formulae and tables for computing the first approximation to the
transpert coefficients of pure substances as discussed sbove, thare are aiso
taoulatad functions available for the Lennard-Jenzz pofentizl for 'uss with formu-
lae for the transport coefficients of binary and multicompenent msixtures and for
the higher corrections tc the transport coefficlentn. 'The formulae wre qguite
lengthy and arc not given here since they are given in full slsewhere, Cenerally
speslking these results are easy o use and give excellent dgreement with the ex-
perimental d&a‘:) uantum effecte have busn shawn to be negligible at roem
termperature and abovs, oven for helium and hrydrogen (11,18), :

The situation with respect to dilute gases is then quite satisfactory at the
present time, particularly as far as nonpolar molecules are concerned. Much
remains to ba done on ihe development of the kinetic thb'ﬁy of poly&tomic graes
and particularly the applications to polar gases. Aside from the very jeneral
and highly mathematical developmenis of Wang Chang and Uhlenbeck (42) znd
de Boer (10), the only other work which has been dons on the kinetic theory of
non-spherical molecules has been that on several speeial models, ‘such as per-

fectly rough spheres (5, 32), loaded spheres (23), and rigid ellipsoids (22).

c. Transport Ceefficients of Dense Gases and Li@idsq“

At the preseat tiine there are frur main approacles nssd in the study of the
tranaport properties of deuse gases and liquids. None of these methods can be
regarded as entirely 'satilf,a.ctory, and indeed rione of them: r.slly provides una-
ble results as far as interrelating bulk properties with intermolecular forces

is concerne-i. We describe thene methods in ordar of increasing mathamatica

complexity.
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Tha priaciple of corresponding siates, which has been of great value for

estimating | p-V-T and thermodynamic properties of fluide (20), cam aiso
bs applied ¢o the correlation of transport cozfficient data, That is, the ixranu-

poxt cosifients divided by their values at the critical point?- m.v he expressed

28 universal functions of the reduced pressure and reduced tempoarafuve:
D = N/De Dr (pe, ™) (3.1
e = W/pe = W (pr,T) (3.42)

7‘\\,- = 'l\\/?\c = Ny \I.Pr,-r")

]

(3.13)

in which T = T}Tc and p, = p/pc. Equation (3,]12) proviides the basis
fcx; Uyehara and Wateen's (41, 20} generalized viscosity chart, and Eq. (3.13)
for Gamson's {i4) guneralized thermal conductivity chart. The latter was
prepared with rela:tiveiy few experimental data. As seon as more daia on high
density transport coefficients are.available., they should be correlated in the

form of generalized charts based on the principle of corresponding states.

f’rhe muterial preserted in thid secticn is trested more ex%énlively in IATGL,
Ch. 9.

9 Other methcds of reducing the varizbles have been suggested. One can, for

example, reoduce the transport coefficients by dividing them by the approp-
riate combination of critical co‘nutantl', thua:

i+
bre YK/ pd ik = p(pr,T) (3.42a)
Iz shother wmaethoad one divides the transport coefficlant by it limiting mero-
preasure vilue, thus;

e
e

7 ] 2..N0 ' S ”
- P = 78 (Pr,"‘) (.‘}.12b)

This methed was used by Comings, Mavland, and Egly (7) in the preparation
of 4 generalized chart.
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‘The theary of rate processes as developed by Eyring and his collaboraters (15)

has been moderately successful in explaining the transpert phenomena in liquids
on a simple pictorial basie. Such an apprcach does not lead to axpressions for
the transport coefficiente in terms of intermolecular forces, but rather to re-

lations between various macroscopic quantities:

k= nh etp (0.408 £7T, /RT) (3.14)
= nh exp (38 T,/T) ' (3. 14a)
= nPrr/ne (3.15)
— 2/3 ,-ife munalornic
A= Bk Y e [,,.quids ] (3.16)
A= 280 k ¥ yc [PO‘UMK] (3.7)
lfequids

In these relations h is Planck's gonstant and c¢ is the speed of sound in the
liquid. Eq. (3.14a) is a simplified form of Eq. (3.14) made po:ubl'e by the
une of Trouton's ruls. Equation (3.16a) is a generalization oJ F;q. £3.16)

made possible by the use of 2 modified Eucken correction., The Eyring thezary
has been used io study the transpori preperties of liquids composed of nonspheri-
cal molecules auch as long chein hydrocarbons and high polymerc . I‘t ie the only

theory of tranaport phenomena which predicis non-newignian flow,

The kinetic theory for rigid spheres devcloped by Enskog, (6,18) 18 probakly

the best theory available at the present time for describing the tranaparxt coef-

ficients of denue grges., Ths biy difiiculty in the devolopment of a kinstic theory
for condensed systems is that one must understrad certriz aspects of three-

molecule and uigher order collislong,. For the rigid sphere wode!, however,

it is theoretically imposaicle for three molecules te collide at exactly the same
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mement. Hence a complete theory may be ddveloped by considzring two-body
collisions enly. The final results of the Mnskoy theory ay bo summarized in
texma of the following relarions, which interralate the riducarl'tt;nlpe'rt coef-

ficients {based on gero pressure values) and the cor.xpret'ifbllity factor for

rigid spheres:

(/) (V/bo) = (1/y) + 08 + O.T6ly (3.7)
R/ 3V /o) = 1.OO2Z (318)
NI Vo) = (fy) + 12 + 0755y (3.19)
Q&) (Vo = (i) (3200t
In thess relations b, = (2/3WNop? and
g= (BV/RT =1 = (b,/8) + 06250 b/ ™+ JEED

+ 0.2862 (b/PP + DII5 (/)4 -

which is obtained froim the virial equation >f state for rigid spheres. Although
these results werec obtsl.ed for rigid spheres, Enskog showed that for the availa-
ble experimental data the fcllowing procedure caould be used for real gasea: One
rezlaces the preasurs p ‘1 Fq. (3.21) by ths “thermal pressure” 1 (bp/aT)v
¢o that y ey be determinzd from the experimental p<¥V-T data from the

rolation:

j - R - 1 32

-y

\
{ For rigid spheres Eqs. (3.21) and (3.2la) are the sam3, but auch is not the
cise¢ ior real moiecuius.) Then one {its the minipaum iz (e curve of the vis-
~osity versus y in order io specify a value of b, . 1t will be interesting to

. g \ i, - . 4
f &° may be calculated zs &= MD/pRr where 33 iw the ceafficisni of seif-
A fuiien caiculaied &1 )} «im. pressurs according o Tg. (4.7).
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teuat thie mpthed further wien mmoxc exporimental data become avaliable. The
Enskey iha6ry has been extended (¢ birary mixtures by Thorne(&).
The methods of non-equilibrium statistical mechanics have been 2pplied io

‘ 2y
tha *,;:;bh;g of transpor’ phenomena in densie systema by Kirk,wooé"‘amd. by Bosrn

apd Greea {3). The firjal resuits are given in terms of a nonegquilibrinm radial
distributisn function, This function is the ~olution of an intmawval equation, which,
however., invaives the next higher order distribution function. A Meungrposition
approximationt’ is intreduced in order to get rid of the higher-order disiribution
funciien, but the validity ¢£ this assumption has aot been fully mesessed. At the
prosent time only limited caleuiations have been made, and hence thz =cihod
doece 15t yoi provide a means for practical computation. It {8 hoped that this
approach will vitimately lsad tp the calculation of dense gas preperties with
accurasy comparabhle to that for dilute gases according to the Chapmar-Enskoy
theory,
Acknowledgsmanin;
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fluxes in the thermo-
dynamics of ixrovers-
ibls tharmadynamics
Beltxingnn'a eeoastant
thermal diffusion ratio
rate of produgtiyn of
species { by chemi-
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mean {zee path in kinastic
theory

e
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static presture
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Notsticn

cosfficient of bhik',: vimdngity

coefficient of therwmal cca-
ductivity

driving force defined in Egq.
1.13

coefficient oi viscositly

chemical potential of ith
sapecies (permolecule?

3.141589.%
maan ‘density of fluid

an
ik

mass density of i
penndt-in fluid

com-~
parameter in intermolecular
potential energy funetion

diameter of rigid sphexe
molecule

eniropy flux

intermolacular potential
energy function

functio#s of the reduce?
tempexkturs whick are
introdvcad in Egs. 3.7,8,9

Subscripts

— e ——— i

i)j,k = cheraié#l spictes present in

)

]

#H

multico;

o) (Al §
quantities pertaining to sth

chemical reaction

ponent mixiure

ceritical quantities

gquahtities ruduced by division

by the correspouding criticzi
Juantjties



Superscripts

O = ide’l gas properiies

T = iranspose of a tensor or
dyadic product

Above Symbolsg

~

quantity per uniit mass

~~

quantity per mole

partial molal quantity

Relow Symbols

= wector quantity
== = tensor guaatity

Vector and Tensor Operations

1'.., ‘i)[": = unit vectors in x, y, =%,
& directione

I<
1

VT = L(@TRx) + j(@T/2y) + k (3T/2#)

(Ve2) = (203 /0x) + (2v;/dy) + (3% /38)
(V-p), = (Bpy /%) + dpye/ay) + (Bpg/ 22)
(VT = W (AT + 1, (3T/2y) 4 v (57702)
(E:Vy) © Pa (OUR/O%) 4+ By (D /2Y) & Pyg (D03 /02)
PP @WIOR) b b QU /2y) 4+ pye (DU, /02)
t Pax (2 /A6) + by (Dvafoy) + Pz (20, /22)
DT/Dt = 2T/2t + (v-V)T
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